A NEW PYRROLIZIDINE ALKALOID N-OXIDE AND THE REVISED STRUCTURE OF SCELERATINE

Martin W. Bredenkamp and Adriaan Wiechers* Department of Chemistry, University of Pretoria, 0002 Pretoria, Republic of South Africa

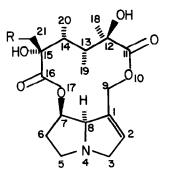
Petrus H. van Rooyen, NCRL, CSIR, P. O. Box 395, 0001 Pretoria, Republic of South Africa

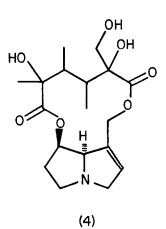
Abstract: Sceleratine [1] and its N-oxide [2] have been isolated from *Senecio latifolius* DC and their structures determined by spectroscopic and chemical methods and X-ray crystal= lography.

Recently we isolated the N-oxide of merenskine [3],¹ a new pyrrolizidine alkaloid N-oxide from *Senecio latifolius* DC.² We have subsequently isolated sceleratine [1] and its N-oxide [2] from the same source. Sceleratine [1] was first isolated in 1941³ but its structure was incorrectly assigned.⁴ We herein present its correct structure.

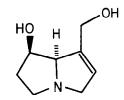
Freshly collected plants of *Senecio Latifolius* DC yielded, after extraction and extensive chromatography, sceleratine N-oxide [2], mp 152°C (dec.; from EtOH), $\left[\alpha\right]_{D}^{20}$ +48.4 $\pm 0.5^{\circ}$ (\underline{c} 1.27; MeOH) and analysed for $C_{18}H_{27}N_{8}$. The IR (KBr) spectrum of [2] suggested an N-oxide (broad band from 2900 to 3500 cm⁻¹) and a diester (1717 and 1747 cm⁻¹). The electron impact mass spectrum (EIMS) (70 eV; 151°C) of [2] showed peaks at m/e 369 (M-0; 0.06%), 170 (6.3%), 142 (34%), 125 (12%), 120 (5.2%), 119 (12%), 117 (11%), 99 (13%), 85 (4.5%), 83 (36%), 81 (11%), 72 (15%), 55 (45%) and 43 (100%) dalton. In the ¹H NMR spectrum of [2] (500 MHz; MeOH-d₄) the signals characterizing the necic acid moiety were two methyl doublets at $\delta 1.006$ and $\delta 1.089$ (³J 7.0 Hz), a methyl singlet at $\delta 1.272$, and a methylene AM-spin system (²J 10.8 Hz) at $\delta 3.485$ and $\delta 3.617$.

Reduction of the N-oxide [2] with reduced Serdoxit⁵ yielded sceleratine [1]⁶ with physical properties in fair agreement with those reported for sceleratine,³ previously assigned struc= ture [4],⁴ mp 176.5-177°C (EtOH; 1it.³ 178°C, water), $[\alpha]_D^{20}$ +55.0 ±0.4° (c 1.09; EtOH) (1it.³ $[\alpha]_D^{21}$ +54.0°, c 1.02, EtOH), analysed for C₁₈H₂₇NO₇ and m/e at 369 dalton (M⁺; 4.1%) measured for C₁₈H₂₇NO₇. Other MS peaks (70 eV; 99°C) were at 325 (M-CO₂; 1.1%), 236 (13%), 226 (7.8%), 209 (1.9%) and 140 (28%) dalton. Furthermore, strong peaks showing [1] to be a diester of retronecine [5] were the three triads⁷ at 138 (17%), 137 (7.4%) and 136 (23%); 121 (42%), 120 (100%) and 119 (77%); and 95 (37%), 94 (49%) and 93 (59%) dalton. The IR (KBr) spectrum of [1] showed an ester (1744 and a shoulder at 1728 cm⁻¹). The ¹H NMR spec= trum of sceleratine [1] (500 MHz, CHCl₃-d) closely resembled that of its N-oxide [2] with respect to the signals of the necic acid mojety. The proton-coupled ¹³C NMR spectrum

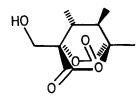

(125 MHz, $CHCl_3-d$) revealed 18 signals, 5 of which were singlets, 5 doublets, 5 triplets and 3 quartets. Two of the singlets represented ester carbonyl carbon atoms (δ 175.31 and δ 178.00) and another that of an olefinic carbon atom (δ 131.13). The remaining two singlet signals indicated oxygenated sp³ carbon atoms (δ 78.65 and δ 83.61). Two of the doublets were typically non-oxygenated sp³ methine carbon atom signals⁸ (δ 37.58 and δ 40.15), comple= mented by two quartets (δ 8.73 and δ 9.59). The other quartet (δ 25.34) indicated a deshielded methyl group. The only triplet (δ 67.20) that could not be assigned to the retronecine moiety was typically the signal of a primary alcohol carbon atom.⁸

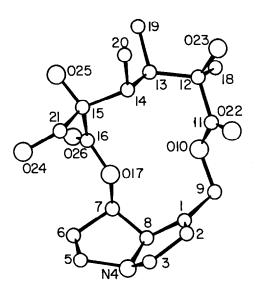

Hydrolysis of sceleratine [1] with aqueous 0.1 M Ba(OH)₂ yielded retronecine [5], mp 116 - 116.5°C (acetone; lit.¹ 118.5 - 119°C, acetone) and $\left[\alpha\right]_{D}^{21.0}$ +55.5 $\pm 0.9^{\circ}$ (c 0.34; EtOH) (lit.¹ $\left[\alpha\right]_{D}^{20.8}$ +52.8 $\pm 0.8^{\circ}$, c 0.38; EtOH), identical to authentic retronecine [5] (mp, mmp and mixed TLC) and sceleranecic bislactone [6],⁹ mp 152.5 - 153°C (EtOH/H₂0; lit.³ 156°C, H₂0) and $\left[\alpha\right]_{D}^{19.7}$ -6.1 $\pm 1.3^{\circ}$ (c 0.41; EtOH) (lit.³ $\left[\alpha\right]_{D}^{24}$ -9.3°, c 1.08, H₂0). The IR (KBr) of [6] indicated a bislactone (1758 and a shoulder at 1782 cm⁻¹). The EIMS (70 eV; 67°C) of [6] showed peaks at m/e 170 (M-CO₂; 5.2%), 142 (170-C₂H₄; 28%), 125 (12%), 99 (15%), 97 (17%), 85 (20%), 83 (39%), 71 (31%), 69 (44%), 57 (63%), 55 (69%) and 43 (100%). The FDMS of [6] showed peaks at 184 (M-CH₂0; 8.7%), 169 (9.4%), 155 (41%), 141 (16%), 127 (100%) and 113 (31%). The ¹H and ¹³C NMR spectra (80 and 20 MHz respectively, CHCl₃-d) were compatable with structure [6]; $\delta_{\rm H}^{1.19}$ d (³J 7.3 Hz, 6H), $\delta_{\rm H}^{1.58}$ s (3H), $\delta_{\rm H}^{1.46}$ - 2.10 m (2H), $\delta_{\rm H}^{2.61}$ t (³J 6.6 Hz, 1H, CH₂OH) and $\delta_{\rm H}^{3.67}$ - 4.19 m (2H); and $\delta_{\rm C}^{13.29}$ and 13.45 (2xCHCH₃), $\delta_{\rm C}^{16.40}$ (CCH₃), $\delta_{\rm C}^{38.59}$ and 42.46 (2xCH), $\delta_{\rm C}^{59.60}$ (CH₂OH), $\delta_{\rm C}^{81.73}$ and 82.08 (2xCCO₂) and $\delta_{\rm C}^{168.48}$ and 169.54 (2xCO₂). Sceleranecic bislactone [6] was identical to authentic material⁴ (mp, mmp, mixed TLC and IR).

The NMR technique of selective population inversion $(SPI)^{10}$ was also applied to sceleratine [1] to determine the mode of attachment of the necic acid to retronecine [5]. An H-9 pro= ton and the H-18 methyl protons were shown to be connected through three bonds to the lower field carbonyl carbon atom at $\delta 178.00$. An H-21 proton, in turn, is connected through three bonds to the higher field carbonyl carbon atom at $\delta 175.31$.


Single-crystal X-ray crystallography was then executed on sceleratine [1] to determine the stereochemistry of the four chiral centres in the necic acid moiety relative to the necine moiety.

Crystals of sceleratine [1] are orthorhombic, space group $P2_12_12_1$, with z = 4, a = 10.547 (4), b = 14.406 (4) and c = 16.506 (5) Å, $D_c = 1.22$ gcm⁻³ and μ (MoK_{α}) = 0.9 cm⁻¹. A total of 2521 reflections were measured in the mode with $3 \le 0 \le 25^{\circ}$ on an Enraf Nonius CAD-4 diffractometer, of which 820 were regarded as unobserved (I < 2 σ I). The structure was solved by direct methods and refined by blocked matrix least squares techniques using SHELX.¹¹ All the non-hydrogen atoms were refined anisotropically. There are two ethanol molecules in the asymmetric unit, and the C-C bond of one had to be constrained during





Sceleratine (1), R=OH Sceleratine N-oxide (2) ((1) N-oxide) Merenskine (3), R=Cl

Retronecine (5)

Sceleranecic bislactone (6)

the refinement. The position of all the hydroxyl hydrogen atoms were obtained from a difference Fourier synthesis, but the remaining hydrogen atoms were included in calculated positions. Convergence, using all the data and $\sigma^{-2}(F)$ weights, was reached at R(w) = 0.056. The saturated five-membered ring is in a flattened envelope $C(6)^{E}(\phi = 263^{\circ}, Q = 0.06 \text{ Å})^{12}$ conformation. The angle between the least squares planes of the two five-membered rings is 136 (2)°.

Tables of structure factors, fractional atomic coordinates, bond lengths and bond angles have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgment

The authors thank Mr Ivan Antonowitz of the CSIR for the highfield NMR spectra, and the CSIR Foundation for Research Development and the University of Pretoria for financial aid.

NOTES AND REFERENCES:

- 1. M.W. Bredenkamp, A. Wiechers and P.H. van Rooyen, Tet. Lett., 1985, 26, 929.
- Senecio sceleratus Schweikerdt has been regrouped under Senecio latifolius DC. 0.M. Hil= liard, "Compositae in Natal", University of Natal Press, Pietermaritzburg, 1977.
- H.L. de Waal and T.P. Pretorius, Onderstepoort J. of Veterinary Science and Animal In= dustry, 1941, 17, 181.
- 4. H.L. de Waal, A. Wiechers and F.L. Warren, J. Chem. Soc., 1963, 953.
- H.J. Huizing and T.M. Malingré, J. Chromatogr., 1979, 173, 187. Serdoxit is an indigo disulphonate adsorbate on a highly porous anion exchange resin. Serdoxit is reduced with 5% aqueous Na₂S₂O₄.
- Detailed experimental procedures employed in the isolation of sceleratine [1] are to be presented in a full publication.
- L.B. Bull, C.C.J. Culvenor and A.T. Dick, "The Pyrrolizidine Alkaloids", North-Holland Publishing Company, Amsterdam, 1968.
- E. Breitmaier and W. Voelter, "¹³C NMR Spectroscopy", 2nd ed., Verlag-Chemie, New York, 1978.
- 9. The single-crystal X-ray structure of [6], as shown, has since been determined and will be reported in a full publication.
- K.G.R. Pachler and P.L. Wessels, J. Magn. Reson., 1973, 12, 337; and *ibid.*, 1977, 28, 53.
- G.M. Sheldrick, "SHELX" program system 1976, University of Cambridge, Cambridge, England.
- 12. D. Cremer and J. Pople, J. Am. Chem. Soc., 1975, 97, 1358.

(Received in UK 12 September 1985)